Forward Estimation for Game-Tree Search
نویسنده
چکیده
It is known that bounds on the minimax values of nodes in a game tree can be used to reduce the computational complexity of minimax search for two-player games. We describe a very simple method to estimate bounds on the minimax values of interior nodes of a game tree, and use the bounds to improve minimax search. The new algorithm, called forward estimation, does not require additional domain knowledge other than a static node evaluation function, and has small constant overhead per node expansion. We also propose a variation of forward estimation, which provides a tradeoff between computational complexity and decision quality. Our experimental results show that forward estimation outperforms alpha-beta pruning on random game trees and the game of Othello.
منابع مشابه
Automatic Learning of Combat Models for RTS Games
Game tree search algorithms, such as Monte Carlo Tree Search (MCTS), require access to a forward model (or “simulator”) of the game at hand. However, in some games such forward model is not readily available. In this paper we address the problem of automatically learning forward models (more specifically, combats models) for two-player attrition games. We report experiments comparing several ap...
متن کاملMonte-Carlo Tree Search: A New Framework for Game AI
Classic approaches to game AI require either a high quality of domain knowledge, or a long time to generate effective AI behaviour. These two characteristics hamper the goal of establishing challenging game AI. In this paper, we put forward Monte-Carlo Tree Search as a novel, unified framework to game AI. In the framework, randomized explorations of the search space are used to predict the most...
متن کاملGeneralized Rapid Action Value Estimation
Monte Carlo Tree Search (MCTS) is the state of the art algorithm for many games including the game of Go and General Game Playing (GGP). The standard algorithm for MCTS is Upper Confidence bounds applied to Trees (UCT). For games such as Go a big improvement over UCT is the Rapid Action Value Estimation (RAVE) heuristic. We propose to generalize the RAVE heuristic so as to have more accurate es...
متن کاملProperties of Forward Pruning in Game-Tree Search
Forward pruning, or selectively searching a subset of moves, is now commonly used in game-playing programs to reduce the number of nodes searched with manageable risk. Forward pruning techniques should consider how pruning errors in a game-tree search propagate to the root to minimize the risk of making errors. In this paper, we explore forward pruning using theoretical analyses and Monte Carlo...
متن کاملMonte-Carlo Exploration for Deterministic Planning
Search methods based on Monte-Carlo simulation have recently led to breakthrough performance improvements in difficult game-playing domains such as Go and General Game Playing. Monte-Carlo Random Walk (MRW) planning applies MonteCarlo ideas to deterministic classical planning. In the forward chaining planner ARVAND, MonteCarlo random walks are used to explore the local neighborhood of a search ...
متن کامل